Intra- and interobserver variability of thyroid volume measurements in healthy adults by 2D versus 3D ultrasound

Author:

Schlögl S.,Mäder U.,Luster M.,Lassmann M.,Andermann P.,Reiners Chr.

Abstract

SummaryThyroid volume measurement by ultrasonography (US) is essential in numerous clinical diagnostic and therapeutic fields. While known to be limited, the accuracy and precision of two-dimensional (2D) US thyroid volume measurement have not been thoroughly characterized. Objective: We sought to assess the intra- and interobserver variability, accuracy and precision of thyroid volume determination by conventional 2D US in healthy adults using reference volumes determined by three-dimensional (3D) US. Design, methods: In a prospective blinded trial, thyroid volumes of ten volunteers were determined repeatedly by nine experienced sonographers using conventional 2D US (ellipsoid model). The values obtained were statistically compared to the so-called true volumes determined by 3D US (multiplanar approximation), the so-called gold standard, to estimate systematic errors and relative deviations of individual observers. Results: The standard error of measurement (SEM) for one observer and successive measurements (intraobserver variability), was 14%, and for different observers and repeated measurements (interobserver variability), 17%. The minimum relative thyroid volume change significantly different at the 95% level was 39% for the same observer and 46% for different observers. Regarding accuracy, the mean value of the differences showed a significant thyroid volume overestimation (17%, p <0.01) by 2D relative to 3D US. Conclusion: 2D US is appropriate for routine thyroid volumetry. Nevertheless, the so-called human factor (random error) should be kept in mind and correction is needed for methodical bias (systematic error). Further efforts are required to improve the accuracy and precision of 2D US thyroid volumetry by optimizing the underlying geometrical modeling or by the application of 3D US.

Publisher

Georg Thieme Verlag KG

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3