Manganese-Catalyzed Direct Olefination via an Acceptorless Dehydrogenative Coupling of Methyl Heteroarenes with Primary Alcohols

Author:

Maji Biplab1ORCID,Barman Milan,Waiba Satyadeep

Affiliation:

1. Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata

Abstract

Synthesis of olefins utilizing different catalytic strategies is an emerging topic in organic chemistry. However, despite of tremendous progress in the field the direct olefination of C(sp3)–H bonds using primary alcohols via an acceptorless dehydrogenative coupling (ADC) is not developed. Such an ADC reaction is highly environmentally benign as it produces dihydrogen and water as the sole byproducts. The liberated dihydrogen can potentially be used as an energy source. In this Synpact article, we present the recent development of ADC reaction as a tool to make unsaturated molecules and a summary of our recently developed synthetic procedure for the preparation of olefins employing an ADC reaction of methyl heteroarenes with alcohols. The catalyst development using an earth’s abundant metal manganese and the scope of such reaction is discussed.1 Introduction2 The Acceptorless Dehydrogenative Coupling as a Tool to Make Unsaturated Molecules3 Transition-Metal-Catalyzed Coupling of Alcohols with Methyl-Substituted Heteroarenes4 Development of the Manganese Catalyst for the Olefination of Methyl-Substituted Heteroarenes5 Scope and Limitation of the Manganese-Catalyzed Direct Olefination of Methyl-Substituted Heteroarenes6 Mechanistic Studies and Proposed Mechanism7 Conclusion

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pincer Nickel‐Catalyzed Olefination of Alcohols with Benzylphosphine Oxides;Chemistry – An Asian Journal;2024-05-06

2. Oxidation and Reduction;Organic Reaction Mechanisms Series;2023-01-20

3. Reactions of Aldehydes and Ketones and Their Derivatives;Organic Reaction Mechanisms Series;2023-01-20

4. Ligand‐Promoted Catalysed Reactions;Organic Reaction Mechanisms Series;2023-01-20

5. Metal-Free Synthesis and Photophysical Behaviour of Thermally Stable Blue Fluorescent Styryl-cored Biaryls by Ring Transformation of alpha-pyranone;Journal of Molecular Structure;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3