Intracellular ATP Signaling Contributes to FAM3A-Induced PDX1 Upregulation in Pancreatic Beta Cells

Author:

Yan Han1,Chen Zhenzhen2,Zhang Haizeng2,Yang Weili13,Liu Xiangyang1,Meng Yuhong1,Xiang Rui1,Wu Zhe4,Ye Jingjing4,Chi Yujing5ORCID,Yang Jichun1

Affiliation:

1. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China

2. Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China

3. Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China

4. Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China

5. Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China

Abstract

AbstractFAM3A is a recently identified mitochondrial protein that stimulates pancreatic-duodenal homeobox 1 (PDX1) and insulin expressions by promoting ATP release in islet β cells. In this study, the role of intracellular ATP in FAM3A-induced PDX1 expression in pancreatic β cells was further examined. Acute FAM3A inhibition using siRNA transfection in mouse pancreatic islets significantly reduced PDX1 expression, impaired insulin secretion, and caused glucose intolerance in normal mice. In vitro, FAM3A overexpression elevated both intracellular and extracellular ATP contents and promoted PDX1 expression and insulin secretion. FAM3A-induced increase in cellular calcium (Ca2+) levels, PDX1 expression, and insulin secretion, while these were significantly repressed by inhibitors of P2 receptors or the L-type Ca2+ channels. FAM3A-induced PDX1 expression was abolished by a calmodulin inhibitor. Likewise, FAM3A-induced β-cell proliferation was also inhibited by a P2 receptor inhibitor and an L-type Ca2+ channels inhibitor. Both intracellular and extracellular ATP contributed to FAM3A-induced PDX1 expression, insulin secretion, and proliferation of pancreatic β cells.

Funder

Natural Science Foundation

National Natural Science Foundation of China

National Key Research Program of China

State Key Laboratory of Cardiovascular Disease

Publisher

Georg Thieme Verlag KG

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference44 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3