Defined Structure-Activity Relationships of Boswellic Acids Determine Modulation of Ca2+ Mobilization and Aggregation of Human Platelets by Boswellia serrata Extracts

Author:

Siemoneit Ulf1,Tausch Lars2,Poeckel Daniel1,Paul Michael3,Northoff Hinnak4,Koeberle Andreas15,Jauch Johann3,Werz Oliver15

Affiliation:

1. Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard Karls University Tuebingen, Tuebingen, Germany

2. Institute of Pharmaceutical Chemistry, University of Frankfurt, Frankfurt, Germany

3. Institute of Organic Chemistry, University of Saarland, Saarbruecken, Germany

4. Institute for Clinical and Experimental Transfusion Medicine, University Medical Center Tuebingen, Tuebingen, Germany

5. Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Jena, Germany

Abstract

AbstractBoswellic acids constitute a group of unique pentacyclic triterpene acids from Boswellia serrata with multiple pharmacological activities that confer them anti-inflammatory and anti-tumoral properties. A subgroup of boswellic acids, characterized by an 11-keto group, elevates intracellular Ca2+ concentrations [Ca2+]i and causes moderate aggregation of human platelets. How different BAs and their mixtures in pharmacological preparations affect these parameters in activated platelets has not been addressed, so far. Here, we show that boswellic acids either antagonize or induce Ca2+ mobilization and platelet aggregation depending on defined structural determinants with inductive effects predominating for a B. serrata gum resin extract. 3-O-Acetyl-11-keto-β-boswellic acid potently suppressed Ca2+ mobilization (IC50 = 6 µM) and aggregation (IC50 = 1 µM) when platelets were activated by collagen or the thromboxane A2 receptor agonist U-46619, but not upon thrombin. In contrast, β-boswellic acid and 3-O-acetyl-β-boswellic acid, which lack the 11-keto moiety, were weak inhibitors of agonist-induced platelet responses, but instead they elicited elevation of [Ca2+]i and aggregation of platelets (≥ 3 µM). 11-Keto-β-boswellic acid, the structural intermediate between 3-O-acetyl-11-keto-β-boswellic acid and β-boswellic acid, was essentially inactive independent of the experimental conditions. Together, our study unravels the complex agonizing and antagonizing properties of boswellic acids on human platelets in pharmacologically relevant preparations of B. serrata gum extracts and prompts for careful evaluation of the safety of such extracts as herbal medicine in cardiovascular risk patients.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3