Lipofuscin Accumulation in Cortisol-Producing Adenomas With and Without PRKACA Mutations

Author:

Angelousi Anna1,Szarek Eva1,Shram Vincent2,Kebebew Electron3,Quezado Martha4,Stratakis Constantine1

Affiliation:

1. Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA

2. Microscopy and Imaging Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA

3. Endocrine Surgery, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA

4. Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA

Abstract

AbstractThe adrenal cortex accumulates lipofuscin granules with age. Lipofuscin accumulation is also seen in adrenocortical tumors associated with Cushing syndrome (CS), particularly those with PRKAR1A mutations, such as in primary pigmented nodular adrenocortical disease (PPNAD). We investigated the presence of lipofuscin in cortisol-producing adenomas (CPAs) responsible for CS with and without the PRKACA (pLeu206Arg) somatic mutation. Ten paraffin-embedded sections of CPAs from cases with overt CS with (n=4) and without (n=6) a PRKACA mutation were microscopically examined through three detection methods, the hematoxylin-Eosin (H & E) staining, the Fontana Masson (FM) staining using light microscopy, and lipofuscin autofluorescence, using confocal laser scanning microscopy (CLSM). Sections were examined quantitatively according to the intensity of the pigmentation, as well as qualitatively based on the total number of granular pigments at all visual fields per tissue slide. Tissues from CPAs were compared to peritumoral adjacent tissues (n=5), to Conn adenomas (n=4), and PPNAD (n=3). CPAs had significantly higher number of lipofuscin-pigment granules compared to peritumoral adrenal tissue and Conn adenomas (46.9±9.5 vs. 3.8±4.8, p=0.0001). The presence of the PRKACA mutation did not increase the chances of pigmentation in the form of lipofuscin granules within CPAs associated with CS. Thus, all CPAs leading to CS accumulate lipofuscin, which presents like pigmentation sometimes seen macroscopically but always detected microscopically. PPNAD caused by PRKAR1A mutations is the best known adrenal lesion leading to CS associated with intense lipofuscin pigmentation and this was confirmed here; CPAs harboring PRKACA mutations did not have statistically significantly more pigmentation than CPAs without mutation, but a larger study might have shown a difference.

Publisher

Georg Thieme Verlag KG

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3