Characterizing and Quenching Autofluorescence in Fixed Mouse Adrenal Cortex Tissue

Author:

Sakr Nawar12ORCID,Glazova Olga12ORCID,Shevkova Liudmila12,Onyanov Nikita2,Kaziakhmedova Samira2,Shilova Alena3,Vorontsova Maria V.12ORCID,Volchkov Pavel12ORCID

Affiliation:

1. Endocrinology Research Centre, Moscow 117292, Russia

2. Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia

3. Faculty of Medicine, M.V. Lomonosov Moscow State University, 27-1, Lomonosovsky Prospect, Moscow 117192, Russia

Abstract

Tissue autofluorescence of fixed tissue sections is a major concern of fluorescence microscopy. The adrenal cortex emits intense intrinsic fluorescence that interferes with signals from fluorescent labels, resulting in poor-quality images and complicating data analysis. We used confocal scanning laser microscopy imaging and lambda scanning to characterize the mouse adrenal cortex autofluorescence. We evaluated the efficacy of tissue treatment methods in reducing the intensity of the observed autofluorescence, such as trypan blue, copper sulfate, ammonia/ethanol, Sudan Black B, TrueVIEWTM Autofluorescence Quenching Kit, MaxBlockTM Autofluorescence Reducing Reagent Kit, and TrueBlackTM Lipofuscin Autofluorescence Quencher. Quantitative analysis demonstrated autofluorescence reduction by 12–95%, depending on the tissue treatment method and excitation wavelength. TrueBlackTM Lipofuscin Autofluorescence Quencher and MaxBlockTM Autofluorescence Reducing Reagent Kit were the most effective treatments, reducing the autofluorescence intensity by 89–93% and 90–95%, respectively. The treatment with TrueBlackTM Lipofuscin Autofluorescence Quencher preserved the specific fluorescence signals and tissue integrity, allowing reliable detection of fluorescent labels in the adrenal cortex tissue. This study demonstrates a feasible, easy-to-perform, and cost-effective method to quench tissue autofluorescence and improve the signal-to-noise ratio in adrenal tissue sections for fluorescence microscopy.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference84 articles.

1. Theory and application of fluorescence microscopy;Coling;Curr. Protoc. Neurosci.,2001

2. Brahme, A. (2014). Comprehensive Biomedical Physics, Elsevier.

3. Multichannel Fluorescence Microscopy: Advantages of Going beyond a Single Emission;Thompson;Adv. NanoBiomed Res.,2022

4. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue;Schnell;J. Histochem. Cytochem.,1999

5. Cell and tissue autofluorescence research and diagnostic applications;Monici;Biotechnology Annual Review,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3