Developing an Artificial Intelligence Solution to Autosegment the Edentulous Mandibular Bone for Implant Planning

Author:

Moufti Mohammad Adel1ORCID,Trabulsi Nuha1,Ghousheh Marah1,Fattal Tala1,Ashira Ali1,Danishvar Sebelan2ORCID

Affiliation:

1. Department of Preventive and Restorative Dentistry, University of Sharjah, United Arab Emirates

2. Brunel University London, United Kingdom

Abstract

Abstract Objective Dental implants are considered the optimum solution to replace missing teeth and restore the mouth's function and aesthetics. Surgical planning of the implant position is critical to avoid damage to vital anatomical structures; however, the manual measurement of the edentulous (toothless) bone on cone beam computed tomography (CBCT) images is time-consuming and is subject to human error. An automated process has the potential to reduce human errors and save time and costs. This study developed an artificial intelligence (AI) solution to identify and delineate edentulous alveolar bone on CBCT images before implant placement. Materials and Methods After obtaining the ethical approval, CBCT images were extracted from the database of the University Dental Hospital Sharjah based on predefined selection criteria. Manual segmentation of the edentulous span was done by three operators using ITK-SNAP software. A supervised machine learning approach was undertaken to develop a segmentation model on a “U-Net” convolutional neural network (CNN) in the Medical Open Network for Artificial Intelligence (MONAI) framework. Out of the 43 labeled cases, 33 were utilized to train the model, and 10 were used for testing the model's performance. Statistical Analysis The degree of 3D spatial overlap between the segmentation made by human investigators and the model's segmentation was measured by the dice similarity coefficient (DSC). Results The sample consisted mainly of lower molars and premolars. DSC yielded an average value of 0.89 for training and 0.78 for testing. Unilateral edentulous areas, comprising 75% of the sample, resulted in a better DSC (0.91) than bilateral cases (0.73). Conclusion Segmentation of the edentulous spans on CBCT images was successfully conducted by machine learning with good accuracy compared to manual segmentation. Unlike traditional AI object detection models that identify objects present in the image, this model identifies missing objects. Finally, challenges in data collection and labeling are discussed, together with an outlook at the prospective stages of a larger project for a complete AI solution for automated implant planning.

Publisher

Georg Thieme Verlag KG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3