Alveolar Bone Segmentation in Intraoral Ultrasonographs with Machine Learning

Author:

Nguyen K.C.T.12,Duong D.Q.13,Almeida F.T.4,Major P.W.4,Kaipatur N.R.4,Pham T.T.1,Lou E.H.M.25,Noga M.1,Punithakumar K.1,Le L.H.124

Affiliation:

1. Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada

2. Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada

3. Department of Computer Sciences, University of Science, Ho Chi Minh City, Vietnam

4. School of Dentistry, University of Alberta, Edmonton, AB, Canada

5. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada

Abstract

The use of intraoral ultrasound imaging has received great attention recently due to the benefits of being a portable and low-cost imaging solution for initial and continuing care that is noninvasive and free of ionizing radiation. Alveolar bone is an important structure in the periodontal apparatus to support the tooth. Accurate assessment of alveolar bone level is essential for periodontal diagnosis. However, interpretation of alveolar bone structure in ultrasound images is a challenge for clinicians. This work is aimed at automatically segmenting alveolar bone and locating the alveolar crest via a machine learning (ML) approach for intraoral ultrasound images. Three convolutional neural network–based ML methods were trained, validated, and tested with 700, 200, and 200 images, respectively. To improve the robustness of the ML algorithms, a data augmentation approach was introduced, where 2100 additional images were synthesized through vertical and horizontal shifting as well as horizontal flipping during the training process. Quantitative evaluations of 200 images, as compared with an expert clinician, showed that the best ML approach yielded an average Dice score of 85.3%, sensitivity of 88.5%, and specificity of 99.8%, and identified the alveolar crest with a mean difference of 0.20 mm and excellent reliability (intraclass correlation coefficient ≥0.98) in less than a second. This work demonstrated the potential use of ML to assist general dentists and specialists in the visualization of alveolar bone in ultrasound images.

Funder

Government of Canada

Alberta Innovates - Technology Futures

Natural Sciences and Engineering Research Council of Canada

Women and Children’s Health Research Institute

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3