Development of Synthetic Strategies to Access Optically Pure ­Feringa’s Motors

Author:

Qin Yu-Nan1,Zhang Chen1,Li Quan1ORCID,Du Guang-Yan2

Affiliation:

1. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University

2. College of Materials Science and Engineering, Zhejiang University of Technology

Abstract

AbstractLight-driven unidirectional molecular motors have gained significant attention since the pioneering work by Prof. Ben Feringa in 1999, and they hold great promise as next-generation smart materials. The intrinsic feature of point chirality and the helicity of these molecular motors requires efficient strategies to access their optically pure forms, especially when chirality-sensitive materials are fabricated. In this short review, we summarize synthetic strategies to access optically pure first- and second-generation molecular motors. Three general strategies are discussed: direct asymmetric synthesis, chiral auxiliary methods and chiral separation aided by a resolving agent. We hope that this review will ignite the enthusiasm of synthetic chemists to address very fundamental but unavoidable synthetic questions on chiral-alkene-based molecular motors concerning their large-scale appli­cations.1 Introduction2 Synthesis of First-Generation Molecular Motors2.1 Direct Asymmetric Synthesis of Molecular Motors2.2 Resolving-Agent-Aided Chiral Resolution of Molecular Motors3 Synthesis of Second-Generation Molecular Motors3.1 Direct Asymmetric Synthesis of Molecular Motors3.2 Chiral Auxiliary Strategy3.3 Domino Strategy4 onclusions

Funder

National Natural Science Foundation of China

Ministry of Human Resources and Social Security

Zhejiang Provincial Natural Science Foundation of China

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3