Affiliation:
1. Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
Abstract
Abstract
Objectives This study compared the ability of BIO-C Repair (BC) and Biodentine (BD) in relation to odontogenic differentiation by evaluating the dentin sialophosphoprotein (DSPP) and bone sialoprotein (BSP) expression and mineral deposition of human dental pulp stem cells (hDPSCs).
Materials and Methods BC and BD were pulverized and sterilized (ISO 10993-5:2009). The hDPSCs were the result of primary cultures that were 80% confluent (having gone through the stem cell marker tests CD90 98%, CD105 99.7%, CD73 94%, and LinNeg 0.5%) and reached P2–3 by means of serum starvation for 24 hours. This study involved seven groups, in which the hDPSCs were cultured on osteogenic media with the addition of either BD (Septodont, United States) at concentrations of 1:1, 1:2, or 1:5; BC (Angelus, Brazil) at concentrations of 1:1, 1:2, or 1:5; or the negative control (Dulbecco's modified eagle medium + osteogenic media). The hDPSC differentiation was determined via enzyme-linked immunosorbent assays of DSPP and BSP expression performed on days 7 and 14 and alizarin red staining performed on day 21.
Statistical Analysis The data were analyzed using a one-way analysis of variance, followed by Tamhane's post hoc test, to compare the differences between groups. The t-test dependent was also used to identify differences between groups.
Results BC and BD at 1:1 concentration, there was a statistically significant difference in DSPP and BSP expression. However, at concentrations of 1:2 and 1:5, there was no significant difference observed in either duration of observation (p > 0.05). The highest DSPP and BSP concentrations after 7 and 14 days of observation were observed with BD and BC at 1:5 concentration (6.6–6.71 and 13.20–13.47 ng/mL).
Conclusion The study shows that BC is as effective as BD in enhancing DSPP and BSP expression and mineral deposition in hDPSCs. The 1:5 concentration of BC showed the highest levels of DSPP and BSP expression and mineral deposition.