Comparative Surface Morphology, Chemical Composition, and Cytocompatibility of Bio-C Repair, Biodentine, and ProRoot MTA on hDPCs

Author:

Ghilotti James,Sanz José LuisORCID,López-García Sergio,Guerrero-Gironés JuliaORCID,Pecci-Lloret María P.ORCID,Lozano Adrián,Llena CarmenORCID,Rodríguez-Lozano Francisco JavierORCID,Forner LeopoldoORCID,Spagnuolo GianricoORCID

Abstract

Biocompatibility is an essential property for any vital pulp material that may interact with the dental pulp tissues. Accordingly, this study aimed to compare the chemical composition and ultrastructural morphology of Biodentine (Septodont, Saint Maur-des-Fosses, France), ProRoot MTA (Dentsply Tulsa Dental Specialties, Johnson City, TN, USA), and Bio-C Repair (Angelus, Londrina, PR, Brazil), as well as their biological effects on human dental pulp cells. Chemical element characterization of the materials was undertaken using scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX). The cytotoxicity was assessed by analyzing the cell viability (MTT assay), cell morphology (immunofluorescence assay), and cell attachment (flow cytometry assay). The results were statistically analyzed using ANOVA and Tukey’s test (p < 0.05). EDX revealed that ProRoot MTA and Biodentine were mostly composed of calcium, carbon, and oxygen (among others), whereas Bio-C Repair evidenced a low concentration of calcium and the highest concentration of zirconium. SEM showed adequate attachment of human dental pulp cells (hDPCS) to vital pulp materials and cytoskeletal alterations were not observed in the presence of material eluates. Remarkably, the undiluted Biodentine group showed higher viability than the control group cells (without eluates) at 24 h, 48 h, and 72 h (p < 0.001). Based on the evidence derived from an in vitro cellular study, it was concluded that Bio-C Repair showed excellent cytocompatibility that was similar to Biodentine and ProRoot MTA.

Funder

Instituto de Salud Carlos III

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3