Radiation therapy planning using MRI-CT fusion in dogs and cats with brain tumors

Author:

Buchholz Julia1,Ludewig Eberhard2,Brühschwein Andreas3,Nitzl Dagmar4,Sumova Andrea5,Kaser-Hotz Barbara5

Affiliation:

1. Animal Clinic Hofheim

2. Diagnostic Imaging Department for Companion Animals and Horses, University of Veterinary Medicine Vienna (Vetmeduni Vienna)

3. Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilian University

4. Freelance Radiologist

5. Anicura Animal Oncology and Imaging Center

Abstract

Abstract Introduction Volume definition is a delicate step within the radiation treatment planning process and the precision of defining the volumes to irradiate is important for the success of the radiation treatment. Traditionally, radiation plans are created using computed tomography (CT) studies. Due to its different mechanism of action, magnetic resonance imaging (MRI) is more sensitive for detection of brain lesions. Therefore, using fused images of both imaging modalities should result in a more precise definition of the volumes to irradiate. The feasibility to fuse CT and MRI studies performed at different institutions was tested to subsequently analyse the influence of the fused images on target volume definition. Materials and methods Fourteen dogs and four cats with brain lesions having MR- and CT-imaging were included. Contrast-enhanced radiotherapy planning CT scans were fused to T1-weighted post-contrast and T2-weighted MRI scans. The gross tumor volume (GTV), the clinical tumor volume (CTV) and the planning target volume (PTV) were delineated on CT- and MRI studies. CT and MRI volumes were compared with regard to volumetric and spatial differences. Results The mean GTV was larger on MRI than on CT (2.15 vs.1.54 cm3). Also the mean CTV was larger on MRI than on CT (5.34 vs. 4.38 cm3). Consequently, the mean PTV was larger on MRI than on CT (14.20 vs. 10.82 cm3) as well. None of the differences in defined volumes were significant. Fusion images were accepted showing mean errors of 1.32 mm (mean error) and 1.73 mm (maximal error). Conclusion CT-MRI fusion was feasible especially when defined, reliable, and consistent anatomic landmarks were used as registration points. Volumetric differences between CT and MRI were insignificant. In general, GTV and CTV were easier identified on MRI.

Publisher

Georg Thieme Verlag KG

Subject

Small Animals

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3