Personalized computed tomography – Automated estimation of height and weight of a simulated digital twin using a 3D camera and artificial intelligence

Author:

Geissler Frederik12,Heiß Rafael2,Kopp Markus2,Wiesmüller Marco2,Saake Marc12,Wuest Wolfgang123,Wimmer Andreas4,Prell Veronika4,Uder Michael123,May Matthias Stefan123

Affiliation:

1. Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany

2. Department of Radiology, University Hospital Erlangen, Erlangen, Germany

3. Imaging Science Institute, Erlangen, Germany

4. Siemens Healthcare GmbH, Forchheim, Germany

Abstract

Purpose The aim of this study was to develop an algorithm for automated estimation of patient height and weight during computed tomography (CT) and to evaluate its accuracy in everyday clinical practice. Materials and methods Depth images of 200 patients were recorded with a 3D camera mounted above the patient table of a CT scanner. Reference values were obtained using a calibrated scale and a measuring tape to train a machine learning algorithm that fits a patient avatar into the recorded patient surface data. The resulting algorithm was prospectively used on 101 patients in clinical practice and the results were compared to the reference values and to estimates by the patient himself, the radiographer and the radiologist. The body mass index was calculated from the collected values for each patient using the WHO formula. A tolerance level of 5 kg was defined in order to evaluate the impact on weight-dependent contrast agent dosage in abdominal CT. Results Differences between values for height, weight and BMI were non-significant over all assessments (p > 0.83). The most accurate values for weight were obtained from the patient information (R² = 0.99) followed by the automated estimation via 3D camera (R² = 0.89). Estimates by medical staff were considerably less precise (radiologist: R² = 0.78, radiographer: R² = 0.77). A body-weight dependent dosage of contrast agent using the automated estimations matched the dosage using the reference measurements in 65 % of the cases. The dosage based on the medical staff estimates would have matched in 49 % of the cases. Conclusion Automated estimation of height and weight using a digital twin model from 3D camera acquisitions provide a high precision for protocol design in computer tomography. Key points:  Citation Format

Publisher

Georg Thieme Verlag KG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3