Construction of Spiro[3-azabicyclo[3.1.0]hexanes] via 1,3-Dipolar Cycloaddition of 1,2-Diphenylcyclopropenes to Ninhydrin-Derived Azomethine Ylides

Author:

Boitsov Vitali M.12,Stepakov Alexander V.34,Wang Siqi3,Filatov Alexander S.3,Lozovskiy Stanislav V.3,Shmakov Stanislav V.1,Khoroshilova Olesya V.3,Larina Anna G.3,Selivanov Stanislav I.3

Affiliation:

1. Saint Petersburg Academic University Nanotechnology Research and Education Centre RAS

2. Pavlov First Saint Petersburg State Medical University

3. Saint Petersburg State University

4. Saint Petersburg State Institute of Technology

Abstract

AbstractThe multi-component 1,3-dipolar cycloaddition of ninhydrin, α-amino acids (or peptides), and cyclopropenes for the synthesis of spirocyclic heterocycles containing both 3-azabicyclo[3.1.0]hexane and 2H-indene-1,3-dione motifs has been developed. This method provides easy access to 3-azabicyclo[3.1.0]hexane-2,2′-indenes with complete stereoselectivity and a high degree of atom economy under mild reaction conditions. A broad range of cyclopropenes and α-amino acids have been found to be compatible with the present protocol, which offers an opportunity to create a new library of biologically significant scaffold (3-azabicyclo[3.1.0]hexane). In addition, the сomprehensive study of mechanism of azomethine ylide formation from ninhydrin and sarcosine was performed by means of M11 density functional theory (DFT) calculations. It has been revealed that experimentally observed 1-methylspiro[aziridine-2,2′-indene]-1′,3′-dione is a kinetically controlled product of this reaction and appears to act as a 1,3-dipole precursor. This theoretical study also shed light on the main transformations of the azomethine ylide derived from ninhydrin and sarcosine such as a 1,3-dipolar cycloaddition to cyclopropene dipolarophiles, a dimerization reaction and a (1+5) electrocyclization reaction. The antitumor activity of some synthesized compounds against cervical carcinoma (HeLa­) cell line was evaluated in vitro by MTS-assay.

Funder

Russian Foundation for Basic Research

Ministry of Education and Science of the Russian Federation

China Scholarship Council

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3