Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine Learning: Segmentation and Radiomics

Author:

Bach Cuadra Meritxell123,Favre Julien4,Omoumi Patrick14

Affiliation:

1. Department of Radiology, Lausanne University Hospital and University of Lausanne (UNIL), Lausanne, Switzerland

2. Centre d'Imagerie BioMédicale (CIBM), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland

3. Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

4. Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

Abstract

AbstractAlthough still limited in clinical practice, quantitative analysis is expected to increase the value of musculoskeletal (MSK) imaging. Segmentation aims at isolating the tissues and/or regions of interest in the image and is crucial to the extraction of quantitative features such as size, signal intensity, or image texture. These features may serve to support the diagnosis and monitoring of disease. Radiomics refers to the process of extracting large amounts of features from radiologic images and combining them with clinical, biological, genetic, or any other type of complementary data to build diagnostic, prognostic, or predictive models. The advent of machine learning offers promising prospects for automatic segmentation and integration of large amounts of data. We present commonly used segmentation methods and describe the radiomics pipeline, highlighting the challenges to overcome for adoption in clinical practice. We provide some examples of applications from the MSK literature.

Funder

Centre d'Imagerie BioMédicale (CIBM) of the University of Lausanne

Swiss Federal Institute of Technology Lausanne

University of Geneva

Centre Hospitalier Universitaire Vaudois

Hôpitaux Universitaires de Genève

Leenaards and Jeantet Foundations

Publisher

Georg Thieme Verlag KG

Subject

Radiology, Nuclear Medicine and imaging,Orthopedics and Sports Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3