Predicting Breast Cancer Subtypes Using Magnetic Resonance Imaging Based Radiomics With Automatic Segmentation

Author:

Yue Wen-Yi,Zhang Hong-Tao1,Gao Shen1,Li Guang2,Sun Ze-Yu2,Tang Zhe2,Cai Jian-Ming1,Tian Ning1,Zhou Juan1,Dong Jing-Hui1,Liu Yuan1,Bai Xu1,Sheng Fu-Geng1

Affiliation:

1. Fifth Medical Center of Chinese PLA General Hospital

2. Keya Medical Technology Co, Ltd, Beijing, China.

Abstract

Objective The aim of the study is to demonstrate whether radiomics based on an automatic segmentation method is feasible for predicting molecular subtypes. Methods This retrospective study included 516 patients with confirmed breast cancer. An automatic segmentation—3-dimensional UNet-based Convolutional Neural Networks, trained on our in-house data set—was applied to segment the regions of interest. A set of 1316 radiomics features per region of interest was extracted. Eighteen cross-combination radiomics methods—with 6 feature selection methods and 3 classifiers—were used for model selection. Model classification performance was assessed using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Results The average dice similarity coefficient value of the automatic segmentation was 0.89. The radiomics models were predictive of 4 molecular subtypes with the best average: AUC = 0.8623, accuracy = 0.6596, sensitivity = 0.6383, and specificity = 0.8775. For luminal versus nonluminal subtypes, AUC = 0.8788 (95% confidence interval [CI], 0.8505–0.9071), accuracy = 0.7756, sensitivity = 0.7973, and specificity = 0.7466. For human epidermal growth factor receptor 2 (HER2)–enriched versus non-HER2–enriched subtypes, AUC = 0.8676 (95% CI, 0.8370–0.8982), accuracy = 0.7737, sensitivity = 0.8859, and specificity = 0.7283. For triple-negative breast cancer versus non–triple-negative breast cancer subtypes, AUC = 0.9335 (95% CI, 0.9027–0.9643), accuracy = 0.9110, sensitivity = 0.4444, and specificity = 0.9865. Conclusions Radiomics based on automatic segmentation of magnetic resonance imaging can predict breast cancer of 4 molecular subtypes noninvasively and is potentially applicable in large samples.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3