Efficient Extraction of Pyrrolizidine Alkaloids from Plants by Pressurised Liquid Extraction – A Preliminary Study

Author:

Kopp Thomas12,Salzer Liesa1,Abdel-Tawab Mona1,Mizaikoff Boris2

Affiliation:

1. Central Laboratory of German Pharmacists, Eschborn, Germany

2. Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany

Abstract

AbstractPyrrolizidine alkaloids and their corresponding pyrrolizidine alkaloid-N-oxides are secondary plant constituents that became the subject of public concern due to their hepatotoxic, pneumotoxic, genotoxic, and cytotoxic effects. In contrast to the well-established analytical separation and detection methods, only a few studies have investigated the extraction of pyrrolizidine alkaloids/pyrrolizidine alkaloid-N-oxides from plant material. In this study, we have applied pressurized liquid extraction with the aim of evaluating the effect of various parameters on the recovery of pyrrolizidine alkaloids. The nature of the modifier (various acids, NH3) added to the aqueous extraction solvent, its concentration (1 or 5%), and the temperature (50 – 125 °C) were systematically varied. To analyse a wide range of structurally different pyrrolizidine alkaloids, Jacobaea vulgaris (syn. Senecio jacobaea), Tussilago farfara, and Symphytum officinale were included. Pyrrolizidine alkaloids were quantified by HPLC-MS/MS and the results obtained by pressurised liquid extraction were compared with the amount of pyrrolizidine alkaloids determined by an official reference method. Using this approach, increased rates of recovery were obtained for J. vulgaris (up to 174.4%), T. farfara (up to 156.5%), and S. officinale (up to 288.7%). Hence, pressurised liquid extraction was found to be a promising strategy for the complete and automated extraction of pyrrolizidine alkaloids, which could advantageously replace other time- and solvent-consuming extraction methods.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3