Multi-Response Optimization of Pyrrolizidine Alkaloids Removal from Chrysanthemum morifolium by High-Pressure Extraction

Author:

Wang HaoORCID,Wang Qiang,Lai Aiping,Zhu Jiahong,Huang Xiuzhu,Hu Guixian

Abstract

As an ingredient in various foods, Chrysanthemum morifolium flower is popular due to its multiple health benefits. Pyrrolizidine alkaloids (PAs) are hepatotoxic secondary metabolites in Chrysanthemum family. Effects of high-pressure extraction (HPE) on PAs removal efficiency, as well as the retention efficiency of functional components, including chlorogenic acid, luteolin-7-β-D-glucopyranoside, 3,5-dicaffeyl quinic acid and total flavonoids, were investigated and optimized using response surface methodology (RSM). Pressure (0.1–200 MPa), numbers of cycles (1–5) and acetic acid concentration (0–10%) were chosen as the independent variables. The results indicated that the pressure was the most significant factors affecting all responses. The optimum HPE for removing Pas and retaining functional components were set at 124 MPa, with one cycle and with an acetic acid concentration of 10%. After comparing the experimental optimum values and predicted optimum values, the validity of RSM model was proved.

Funder

National Major Risk Assessment Project

Discipline Construction Foundation of Zhejiang Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3