Qualitative and Quantitative Evaluation of Morpho-Metabolic Changes in Bone Cartilage Complex of Knee Joint in Osteoarthritis Using Simultaneous 18F-NaF PET/MRI—A Pilot Study

Author:

Jena Amarnath1,Goyal Nidhi2,Rana Prerana13,Taneja Sangeeta1,Vaish Abhishek4,Botchu Rajesh5,Vaishya Raju4

Affiliation:

1. Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospital, New Delhi, India

2. Department of Radiodiagnosis and Imaging, Indraprastha Apollo Hospitals, New Delhi, India

3. Apollo Hospitals Education and Research Foundation, Indraprastha Apollo Hospitals, New Delhi, India

4. Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospitals, New Delhi, India

5. Department of Musculoskeletal Radiology, Royal Orthopedic Hospital, Birmingham, United Kingdom

Abstract

Abstract Background Articular cartilage (AC) loss and deterioration, as well as bone remodeling, are all symptoms of osteoarthritis (OA). As a result, an ideal imaging technique for researching OA is required, which must be sensitive to both soft tissue and bone health. Objective The aim of this study was to assess the potential of simultaneous 18F sodium fluoride (18F-NaF) positron emission tomography/magnetic resonance imaging (PET/MRI) to identify as well as classify osseous metabolic abnormalities in knee OA and to see if degenerative changes in the cartilage and bone on MRI might be correlated with subchondral 18F-NaF uptake on PET. Methods Sixteen (32 knees) volunteers with no past history of knee injury, with or without pain, were enrolled for the research from January to July 2021. The images of both knees were taken utilizing an molecular magnetic resonance (mMR) body matrix coil on a simultaneous PET/MRI biograph mMR. The acquisition was conducted after 45 minutes of intravenous infusion of 18F-NaF 185–370 MBq (5–10 mCi) over one PET bed for 40 minutes, while MRI sequences were performed simultaneously. Results All pathologies showed significantly higher maximum standardized uptake value (SUVmax) than the background. Thirty-four subchondral magic spots were identified on 18F-NaF PET without any structural alteration on MRI. Bone marrow lesions (BMLs) and osteophytes with higher MRI osteoarthritis knee score (MOAKS) score showed higher 18F-NaF uptake (grade1˂grade2˂grade3). BMLs had corresponding AC degeneration. There was discordance between grade 1 osteophytes (86.6%), sclerosis (53.7%) and grade 1 BML in cruciate ligament insertion site (91.66%); they did not have high uptake of 18F-NaF. In case of cartilage, there was significant difference between AC grades and average subchondral SUVmax and T2* relaxometry (grade0˂grade1˂grade2˂grade3˂grade4). BMLs are much more metabolically active than other pathologies, while sclerosis is the least. We also found that the subchondral uptake was statistically increased in the areas of pathology: Conclusion 18F-NaF PET/MRI was able to detect knee abnormalities unseen on MRI alone and simultaneously assessed metabolic and structural markers of knee OA across multiple tissues in the joint. Thus, it is a promising tool for detection of early metabolic changes in OA.

Publisher

Georg Thieme Verlag KG

Subject

Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Articular cartilage regeneration: A current concepts review;Journal of Arthroscopic Surgery and Sports Medicine;2024-07-08

2. A framework of biomarkers for skeletal aging: a consensus statement by the Aging Biomarker Consortium;Life Medicine;2023-11-22

3. Knee Osteoarthritis Detection And Classification Using Transfer Learning;2023 3rd International Conference on Computing and Information Technology (ICCIT);2023-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3