Investigation of performance losses in microbial fuel cells with low platinum loadings on air-cathodes

Author:

Sonmez EdaORCID,Avci BurcakORCID,Mohamed NourhanORCID,Bermek HakanORCID

Abstract

The effect of platinum (Pt) loadings of air-cathodes in the 0-0.5 mg cm-2 range on single chamber microbial fuel cell (MFC) performance and cathode impedance was evaluated. In MFC tests, reducing benchmarking Pt loading of 0.5 mg cm-2 to 0.1-0 mg cm-2 decreased maximum power density by between 38% and 84%. The decrease in cathode open circuit potential with reduced loadings was small down to a catalyst loading of 0.03 mg cm-2, but was significant when the loading was further reduced to 0.01 or 0 mg cm-2. Impedance measurements of cathodes revealed that both charge-transfer and diffusion resistance increase with decreasing catalyst loadings on cathodes. Charge-transfer resistance of benchmarking cathode increased to a small extent when loadings were reduced to 0.1-0.03 mg cm-2. Below 0.03 mg cm-2, dramatic increase of charge-transfer resistance suggested that 0.03 mg cm-2 can be considered as the minimum Pt loading for which kinetic limitations are not of great concern and can be overcome to a large extent compared to lower loadings. In comparison to charge-transfer resistance, diffusion resistance differed more significantly between the loadings of 0.03 and 0.5 mg cm-2; and it was therefore the main component that changed the internal resistance of these cathodes.

Publisher

The European Chemistry and Biotechnology Journal

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3