Abstract
This study aimed to investigate the presence of biofilm-forming bacteria within high sulfide sludge obtained from a rubber wastewater treatment plant and assess their suitability for application within a BioCircuit System (BCS) as a symbiotic community for treating nutrient-rich wastewater. The sludge samples were collected and subjected to microbial culture techniques, wherein pure cultures were isolated based on morphological characteristics observed under a light microscope, followed by assessment of motility using swarm agar. Subsequent identification was conducted utilizing the 16S rRNA gene sequencing method, and the isolated bacteria were introduced into the BCS. A 12 mL microbial fuel cell test was conducted to evaluate their power generation capabilities. The wastewater treatment process involved inoculating the BCS with 20% crude rubber wastewater sludge, and the system was initiated at a flow rate of 0.5 L/min for a month. Upon achieving an open-circuit voltage exceeding 50 mV, the BCS was operated at incremental flow rates (0.5-1.0, 1.0-1.5, and 1.5-2.0 mL/ min) over a period of 6 months. Real-time monitoring of voltage, flow rate, and energy consumption was facilitated through an internet-of-things online program. Weekly sampling and analysis of influent and effluent, focusing on chemical oxygen demand (COD), sulfate, and sulfide concentrations, were conducted. Additionally, the BioCircuit voltage was recorded every 5 minutes. The results revealed the presence of six group-forming shaped bacteria identified as Bacillus tequilensis, Bacillus sp., Ferribacterium limneticum, Bacillus weihenstephanesis, and Mycobacterium sp., respectively. The optimal flow rate of 1.5 L/min yielded a maximum voltage of 1.2 V and demonstrated high wastewater treatment efficiency. Economically, the BCS operation exhibited a power consumption rate of 0.257 kWhr/m3 of treated wastewater, leading to an 88.90% reduction in carbon footprint compared to aerated lagoon treatment, equivalent to 50.94 kg CO2/m3 of treated wastewater or 183,384 kg CO2/yr for a 10 m3 plant. These findings underscore the potential of the BCS in conjunction with group-forming shaped bacteria communities for various industrial wastewater treatment applications.
Publisher
The European Chemistry and Biotechnology Journal
Reference23 articles.
1. Alvarez, H. M., & Steinbüchel, A. (2002). Physiology, biochemistry, and molecular biology of mycobacteria. Advances in biochemical engineering/biotechnology, 74, 103–140. https://doi.org/10.1007/3-540-45790-0_4
2. Asensio, Y., Fernandez-Marchante, C. M., Lobato, J., Canizares, P., & Rodrigo, M. A. (2016). Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells. Water research, 99, 16-23. https://doi.org/10.1016/j.watres.2016.04.028
3. Bridier, A., Briandet, R., Thomas, V., & Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: a review. Biofouling, 27(9), 1017-1032. https://doi.org/10.1080/08927014.2011.626899
4. Davey, M. E., & O’toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiology and molecular biology reviews, 64(4), 847-867. https://doi.org/10.1128/MMBR.64.4.847-867.2000
5. Fan, Y., Janicek, A., & Liu, H. (2024). Stable and high voltage and power output of CEA-MFCs internally connected in series (iCiS-MFC). The European chemistry and biotechnology journal, (1), 47–57. https://doi.org/10.62063/ecb-17