Exploring biofilm-forming bacteria for integration into BioCircuit wastewater treatment

Author:

Sukkasem ChontisaORCID

Abstract

This study aimed to investigate the presence of biofilm-forming bacteria within high sulfide sludge obtained from a rubber wastewater treatment plant and assess their suitability for application within a BioCircuit System (BCS) as a symbiotic community for treating nutrient-rich wastewater. The sludge samples were collected and subjected to microbial culture techniques, wherein pure cultures were isolated based on morphological characteristics observed under a light microscope, followed by assessment of motility using swarm agar. Subsequent identification was conducted utilizing the 16S rRNA gene sequencing method, and the isolated bacteria were introduced into the BCS. A 12 mL microbial fuel cell test was conducted to evaluate their power generation capabilities. The wastewater treatment process involved inoculating the BCS with 20% crude rubber wastewater sludge, and the system was initiated at a flow rate of 0.5 L/min for a month. Upon achieving an open-circuit voltage exceeding 50 mV, the BCS was operated at incremental flow rates (0.5-1.0, 1.0-1.5, and 1.5-2.0 mL/ min) over a period of 6 months. Real-time monitoring of voltage, flow rate, and energy consumption was facilitated through an internet-of-things online program. Weekly sampling and analysis of influent and effluent, focusing on chemical oxygen demand (COD), sulfate, and sulfide concentrations, were conducted. Additionally, the BioCircuit voltage was recorded every 5 minutes. The results revealed the presence of six group-forming shaped bacteria identified as Bacillus tequilensis, Bacillus sp., Ferribacterium limneticum, Bacillus weihenstephanesis, and Mycobacterium sp., respectively. The optimal flow rate of 1.5 L/min yielded a maximum voltage of 1.2 V and demonstrated high wastewater treatment efficiency. Economically, the BCS operation exhibited a power consumption rate of 0.257 kWhr/m3 of treated wastewater, leading to an 88.90% reduction in carbon footprint compared to aerated lagoon treatment, equivalent to 50.94 kg CO2/m3 of treated wastewater or 183,384 kg CO2/yr for a 10 m3 plant. These findings underscore the potential of the BCS in conjunction with group-forming shaped bacteria communities for various industrial wastewater treatment applications.  

Publisher

The European Chemistry and Biotechnology Journal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3