Properties of Short-Period Internal Waves in the Kara Gates Strait Revealed from Spaceborne SAR Data

Author:

Kopyshov Il'ya12ORCID,Kozlov Igor1ORCID,Shiryborova A.34ORCID,Myslenkov Stanislav3356ORCID

Affiliation:

1. Russian Academy of Sciences Sea Hydrophysical Institute

2. Moscow Institute of Physics and Technology (State University)

3. Lomonosov Moscow State University

4. P.P.Shirshov Institute of Oceanology of the Russian Academy of Science

5. P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences

6. Hydrometeorological Research Centre of the Russian Federation

Abstract

This paper presents the results of identification of surface manifestations (SM) of short-period internal waves (SIW) in Sentinel-1 A/B synthetic aperture radar (SAR) images of the Kara Gates Strait in August–September 2021. 44 SM of SIW trains were detected in 47 SAR images. Statistics of occurrence, propagation direction and spatial characteristics of SIWs in the study area are given. During two months, satellite observations cover almost all phases of spring-neap tidal cycle. The use of a detailed topography of the study area made it possible to identify certain regions with a more frequent presence of the SIW leading crests with a particular focus made on the shallow (< 100 m) part of the strait. Each identified region is then described in terms of water depth, dimensionless slope, amplitudes of tidal current velocity and properties of SIWs. The obtained results were then compared with the results of previous studies.

Publisher

Geophysical Center of the Russian Academy of Sciences

Subject

General Earth and Planetary Sciences

Reference38 articles.

1. Boegman, L., and M. Stastna (2019), Sediment Resuspension and Transport by Internal Solitary Waves, Annual Review of Fluid Mechanics, 51(1), 129–154, https://doi.org/10.1146/annurev-fluid-122316-045049., Boegman, L., and M. Stastna (2019), Sediment Resuspension and Transport by Internal Solitary Waves, Annual Review of Fluid Mechanics, 51(1), 129–154, https://doi.org/10.1146/annurev-fluid-122316-045049.

2. Carr, M., P. Sutherland, A. Haase, K.-U. Evers, I. Fer, A. Jensen, H. Kalisch, J. Berntsen, E. Părău, Ø. Thiem, and P. A. Davies (2019), Laboratory Experiments on Internal Solitary Waves in Ice-Covered Waters, Geophysical Research Letters, 46(21), 12,230–12,238, https://doi.org/10.1029/2019GL084710., Carr, M., P. Sutherland, A. Haase, K.-U. Evers, I. Fer, A. Jensen, H. Kalisch, J. Berntsen, E. Părău, Ø. Thiem, and P. A. Davies (2019), Laboratory Experiments on Internal Solitary Waves in Ice-Covered Waters, Geophysical Research Letters, 46(21), 12,230–12,238, https://doi.org/10.1029/2019GL084710.

3. Czipott, P. V., M. D. Levine, C. A. Paulson, D. Menemenlis, D. M. Farmer, and R. G. Williams (1991), Ice Flexure Forced by Internal Wave Packets in the Arctic Ocean, Science, 254(5033), 832–835, https://doi.org/10.1126/science.254.5033.832., Czipott, P. V., M. D. Levine, C. A. Paulson, D. Menemenlis, D. M. Farmer, and R. G. Williams (1991), Ice Flexure Forced by Internal Wave Packets in the Arctic Ocean, Science, 254(5033), 832–835, https://doi.org/10.1126/science.254.5033.832.

4. da Silva, J. C. B., and K. R. Helfrich (2008), Synthetic Aperture Radar observations of resonantly generated internal solitary waves at Race Point Channel (Cape Cod), Journal of Geophysical Research: Oceans, 113(C11), https://doi.org/10.1029/2008JC005004., da Silva, J. C. B., and K. R. Helfrich (2008), Synthetic Aperture Radar observations of resonantly generated internal solitary waves at Race Point Channel (Cape Cod), Journal of Geophysical Research: Oceans, 113(C11), https://doi.org/10.1029/2008JC005004.

5. D’Asaro, E. A. (2022), How do Internal Waves Create Turbulence and Mixing in the Ocean?, ESS Open Archive, https://doi.org/10.1002/essoar.10511843.1, (Preprint)., D’Asaro, E. A. (2022), How do Internal Waves Create Turbulence and Mixing in the Ocean?, ESS Open Archive, https://doi.org/10.1002/essoar.10511843.1, (Preprint).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3