ETS1 is a novel transcriptional regulator of adult T-cell leukemia/lymphoma of North American descent

Author:

Luchtel Rebecca A.1ORCID,Zhao Yongmei2,Aggarwal Ritesh K.3ORCID,Pradhan Kith4,Maqbool Shahina B.2

Affiliation:

1. 1Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, IL

2. 2Department of Genetics, Albert Einstein College of Medicine, Bronx, NY

3. 3Department of Medicine, Albert Einstein College of Medicine, Bronx, NY

4. 4Department of Epidemiology & Population Health (Biostatistics), Albert Einstein College of Medicine, Bronx, NY

Abstract

Abstract Adult T-cell leukemia/lymphoma (ATLL) is an aggressive T-cell lymphoma associated with the human T-cell lymphotropic virus type 1 virus endemic in regions including Japan, the Caribbean islands, and Latin America. Although progress has been made to understand the disease, survival outcomes with current standard therapy remain extremely poor particularly in acute ATLL, underlying the need for better understanding of its biology and identification of novel therapeutic targets. Recently, it was demonstrated that ATLL of North American–descendent patients (NA-ATLL) is both clinically and molecularly distinct from Japanese-descendent (J-ATLL), with inferior prognosis and higher incidence of epigenetic-targeting mutations compared with J-ATLL. In this study, combined chromatin accessibility and transcriptomic profiling were used to further understand the key transcriptional regulators of NA-ATLL compared with J-ATLL. The ETS1 motif was found to be enriched in chromatin regions that were differentially open in NA-ATLL, whereas the AP1/IRF4 motifs were enriched in chromatin regions more open in J-ATLL. ETS1 expression was markedly elevated in NA-ATLL in both cell line and primary tumor samples, and knockdown of ETS1 in NA-ATLL cells resulted in inhibition of cell growth. CCR4, a previously identified oncogenic factor in ATLL, was found to be a direct ETS1 transcriptional target in NA-ATLL. As such, ETS1 provides an alternate mechanism to enhance CCR4 expression/activity in NA-ATLL, even in the absence of activating CCR4 mutations (CCR4 mutations were identified in 4 of 9 NA-ATLL cases). Taken together, this study identifies ETS1 as a novel dominant oncogenic transcriptional regulator in NA-ATLL.

Publisher

American Society of Hematology

Subject

Hematology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3