Targeting conditioned media dependencies and FLT-3 in chronic lymphocytic leukemia

Author:

Parvin Salma1ORCID,Aryal Aditi1,Yin Shanye12ORCID,Fell Geoffrey G.1,Davids Matthew S.1,Wu Catherine J.123ORCID,Letai Anthony12

Affiliation:

1. 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA

2. 2Harvard Medical School, Boston, MA

3. 3Broad Institute of MIT and Harvard, Cambridge, MA

Abstract

Abstract The importance of the stromal microenvironment in chronic lymphocytic leukemia (CLL) pathogenesis and drug resistance is well established. Despite recent advances in CLL therapy, identifying novel ways to disrupt interactions between CLL and its microenvironment may identify new combination partners for the drugs currently in use. To understand the role of microenvironmental factors on primary CLL cells, we took advantage of an observation that conditioned media (CM) collected from stroma was protective of CLL cells from spontaneous cell death ex vivo. The cytokine in the CM-dependent cells that most supports CLL survival in short-term ex vivo culture was CCL2. Pretreatment of CLL cells with anti-CCL2 antibody enhanced venetoclax-mediated killing. Surprisingly, we found a group of CLL samples (9/23 cases) that are less likely to undergo cell death in the absence of CM support. Functional studies revealed that CM-independent (CMI) CLL cells are less sensitive to apoptosis than conventional stroma-dependent CLL. In addition, a majority of the CMI CLL samples (80%) harbored unmutated immunoglobulin heavy-chain variable (IGHV) region. Bulk-RNA sequence analysis revealed upregulation of the focal adhesion and RAS signaling pathways in this group, along with expression of fms-like tyrosine kinase 3 (FLT3) and CD135. Treatment with FLT3 inhibitors caused a significant reduction in cell viability among CMI samples. In summary, we were able to discriminate and target 2 biologically distinct subgroups of CLL based on CM dependence with distinct microenvironmental vulnerabilities.

Publisher

American Society of Hematology

Subject

Hematology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3