Abstract
Abstract
Intracellular pH and 2,3-diphosphoglycerate concentration in sickle cell amenia and normal human blood samples were measured by means of phosphorus-31 nuclear magnetic resonance spectroscopy. To monitor the concentrations of various internal phosphorylated metabolites of intact red blood cells, heparinized blood samples were used and were incubated at 37 degrees C with 5.6% C92, 25% O2, and 69.4% N2. The 31P chemical shifts of phosphorylated compounds, such as 2,3-diphosphoglycerate, adenosine 5′-triphosp-ate, and inorganic phosphate, depend on pH, and by using an appropriate calibration curve, the intracellular pH of intact erythrocytes can be obtained. The intracellular pH values in fresh sickl cell blood and normal blood were found to be 7.14 and 7.29, respectively. However, the whole-blood pH, as measured by a standard pH meter, was found to be 7.54 for both types of blood. The initial concentration of 2,3-diphosphoglycerate in sickle cell blood was about 30% higher, but it was depleted much faster during incubation than that in normal blood. The difference in intracellular pH between these two types of blood samples remained constant during incubation, even after depletion of 2,3-diphosphoglycerate. These results suggest that there are differences in intracellular environment between normal and sickle cell blood. Thus, 31P nuclear magnetic resonance spectroscopy provides a fast, direct, continuous, and noninvasive way to monitor the intracellular environment of intact erythrocytes.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献