Evidence that fibrin alpha-chain RGDX sequences are not required for platelet adhesion in flowing whole blood

Author:

Hantgan RR1,Endenburg SC1,Sixma JJ1,de Groot PG1

Affiliation:

1. Department of Biochemistry, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA.

Abstract

Abstract The role of the RGDX putative receptor-recognition sites, which are present on the alpha chains of fibrin, in promoting platelet adhesion has been examined in flowing whole blood using the rectangular perfusion chamber at wall shear rates of 340 and 1,600/s. Platelets adhered to a comparable extent to surfaces coated with native fibrin and surfaces coated with fragment X-fibrin, a product of limited fibrinolysis that lacks the RGDS sites normally present at positions 572 to 575 of the alpha chains. The strengths of these adhesive interactions were comparable based on the concentrations of the antiadhesive peptide D-RGDW required to block platelet deposition to native and fragment X-fibrin at both low and high wall shear rate. Blocking either or both RGDX sequences with peptide-specific monoclonal antibodies did not inhibit platelet deposition in perfusion experiments performed with normal blood at 340/s, indicating that neither RGD motif is required for adhesion. However, adhesion was partly inhibited by anti-RGDX antibodies when perfusions were performed with blood from an afibrinogenemic patient, suggesting the RGDX sequences may play a limited role in platelet deposition. Exposure of fibrin surfaces to plasminogen/tissue-type plasminogen activator did cause a time- dependent loss of adhesiveness, but this effect was only weakly correlated with proteolysis of the fibrin alpha chains. These observations provide evidence that neither RGDX sequence is required for platelets to adhere avidly to fibrin in flowing blood. These results further suggest that incomplete fibrinolysis yields a highly thrombogenic surface.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3