Severe Factor VII Deficiency Due to a Mutation Disrupting a Hepatocyte Nuclear Factor 4 Binding Site in the Factor VII Promoter

Author:

Arbini Arnaldo A.1,Pollak Eleanor S.1,Bayleran Janet K.1,High Katherine A.1,Bauer Kenneth A.1

Affiliation:

1. From the Hematology-Oncology Section, Department of Medicine, Brockton-West Roxbury Department of Veterans Affairs Medical Center, and Beth Israel Hospital, Harvard Medical School, Boston, MA; the Departments of Pediatrics and Pathology and Laboratory Medicine, University of Pennsylvania and The Children's Hospital of Philadelphia, PA; and the Genetics Program, Eastern Maine Medical Center, Bangor, ME.

Abstract

AbstractAlthough small deletions, splice site abnormalities, missense, and nonsense mutations have been identified in patients with factor VII deficiency, there have been no reports of mutations in the factor VII promoter. We investigated a girl with factor VII levels that were less than 1% of normal in association with a severe bleeding diathesis. The patient is homozygous for a T to G transversion that occurs 61 bp before the translation start site. This nucleotide is in a sequence that is an hepatocyte nuclear factor 4 (HNF-4) binding site within the factor VII promoter (ACTTTG Æ → ACGTTG). Using gel mobility shift assays, we show that the mutation disrupts the binding of HNF-4 to its cognate binding site. In growth hormone reporter gene assays, the activity of a plasmid containing the mutant promoter was 6.7% of the wild-type promoter plasmid. Although HNF-4 was able to transactivate the wild-type factor VII promoter 5.4-fold in HeLa cells, no transactivation could be shown with the mutant promoter. These findings indicate that HNF-4 exerts a major positive regulatory effect on factor VII expression and provides in vivo evidence that binding of this transcription factor is critical for normal factor VII expression.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3