Factor IX is activated in vivo by the tissue factor mechanism

Author:

Bauer KA1,Kass BL1,ten Cate H1,Hawiger JJ1,Rosenberg RD1

Affiliation:

1. Charles A. Dana Research Institute, Boston, MA.

Abstract

Abstract Despite significant progress in elucidating the biochemistry of the hemostatic mechanism, the process of blood coagulation in vivo remains poorly understood. Factor IX is a vitamin K-dependent glycoprotein that can be activated by factor XIa or the factor VII-tissue factor complex in vitro. To investigate the role of these two pathways in factor IX activation in humans, we have developed a sensitive procedure for quantifying the peptide that is liberated with the generation of factor IXa. The antibody population used for the immunoassay was raised in rabbits and chromatographed on a factor IX-agarose immunoadsorbent to obtain antibody populations with minimal intrinsic reactivity toward factor IX. We determined that the mean level of the factor IX activation peptide (FIXP) in normal individuals under the age of 40 years was 203 pmol/L and that levels increased significantly with advancing age. The mean concentration of FIXP was markedly reduced to 22.7 pmol/L in nine patients with hereditary factor VII deficiency (factor VII coagulant activity less than 7%) but was not significantly different from normal controls in nine subjects with factor XI deficiency (factor XI coagulant activity less than 8%). These data indicate that factor IXa generation in vivo results mainly from the activity of the tissue factor mechanism rather than the contact system (factor XII, prekallikrein, high molecular-weight kininogen, factor XI). Our results may also help to explain the absence of a bleeding diathesis in many patients with deficiencies of the contact factors of coagulation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Field Study and Correlative Studies of Factor IX Variant FIX-R338L in Participants Treated with Fidanacogene Elaparvovec;Thrombosis and Haemostasis;2024-06-11

2. A novel factor IXa–specific enzyme-linked immunosorbent assay detects factor IXa in human plasma;Research and Practice in Thrombosis and Haemostasis;2024-01

3. Factor XI deficiency and its management;i-manager's Journal on Life Sciences;2024

4. Thrombosis and Aging: fibrin clot properties and oxidative stress;Antioxidants & Redox Signaling;2023-12-07

5. Hypercoagulable states;Small Animal Critical Care Medicine;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3