Characterization of human osteoblast and megakaryocyte-derived osteonectin (SPARC)

Author:

Kelm RJ Jr1,Hair GA1,Mann KG1,Grant BW1

Affiliation:

1. Dept. of Biochemistry, University of Vermont, Burlington 05405.

Abstract

Abstract Osteonectin is an adhesive, cell, and extracellular matrix-binding glycoprotein found primarily in the matrix of bone and in blood platelets in vivo. Osteonectins isolated from these two sources differ with respect to the complexity of their constituent N-linked oligosaccharide. In this study, osteonectin synthesized by bone-forming cells (osteoblasts) and platelet-producing cells (megakaryocytes) in vitro was analyzed to determine if the proteins produced were analogous in terms of glycosylation to those isolated from bone and platelets, respectively. Immunoblot analyses of osteonectin produced by the osteoblast-like cell lines, SaOS-2 and MG-63, indicated that secreted and intracellular forms of the molecule are structurally distinct. Endoglycosidase treatment and immunoblotting of osteonectin secreted from SaOS-2 and MG-63 cells, under serum-deprived conditions, suggested that the molecule possessed a complex type oligosaccharide unlike the high-mannose moiety found on bone matrix-derived osteonectin. Biosynthetic labeling of SaOS-2 cells and human megakaryocytes indicated that both cell types synthesize osteonectin de novo. Electrophoretic and glycosidase sensitivity analyses of [35S]-osteonectin isolated from lysates of metabolically labeled SaOS-2 cells and megakaryocytes indicated that these two cell types synthesize osteonectin molecules that are identical in oligosaccharide structure to the isolated bone and platelet proteins. These data suggest that the intracellular form of the osteonectin molecule is glycosylated differently in SaOS-2 cells and megakaryocytes but that the extracellular form which is secreted from platelets in vivo and osteoblasts in vitro is characterized by the presence of a complex type N-linked oligosaccharide.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3