Space Microgravity Alters Neural Stem Cell Division: Implications for Brain Cancer Research on Earth and in Space

Author:

Shaka Sophia,Carpo Nicolas,Tran Victoria,Cepeda Carlos,Espinosa-Jeffrey Araceli

Abstract

Considering the imminence of long-term space travel, it is necessary to investigate the impact of space microgravity (SPC-µG) in order to determine if this environment has consequences on the astronauts’ health, in particular, neural and cognitive functions. Neural stem cells (NSCs) are the basis for the regeneration of the central nervous system (CNS) cell populations and learning how weightlessness impacts NSCs in health and disease provides a critical tool for the potential mitigation of specific mechanisms leading to neurological disorders. In previous studies, we found that exposure to SPC-µG resulted in enhanced proliferation, a shortened cell cycle, and a larger cell diameter of NSCs compared to control cells. Here, we report the frequent occurrence of abnormal cell division (ACD) including incomplete cell division (ICD), where cytokinesis is not successfully completed, and multi-daughter cell division (MDCD) of NSCs following SPC-µG as well as secretome exposure compared to ground control (1G) NSCs. These findings provide new insights into the potential health implications of space travel and have far-reaching implications for understanding the mechanisms leading to the deleterious effects of long-term space travel as well as potential carcinogenic susceptibility. Knowledge of these mechanisms could help to develop preventive or corrective measures for successful long-term SPC-µG exposure.

Funder

NASA Space Biology

NIH/NICHD

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3