Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization

Author:

Lieschke GJ1,Grail D1,Hodgson G1,Metcalf D1,Stanley E1,Cheers C1,Fowler KJ1,Basu S1,Zhan YF1,Dunn AR1

Affiliation:

1. Melbourne Tumor Biology Branch, Ludwig Institute for Cancer Research, Parkville, Victoria, Australia.

Abstract

Abstract Mice lacking granulocyte colony-stimulating factor (G-CSF) were generated by targeted disruption of the G-CSF gene in embryonal stem cells. G-CSF-deficient mice (genotype G-CSF-/-) are viable, fertile, and superficially healthy, but have a chronic neutropenia. Peripheral blood neutrophil levels were 20% to 30% of wild-type mice (genotype G- CSF+/+) and mice heterozygous for the null mutation had intermediate neutrophil levels, suggesting a gene-dosage effect. In the marrow of G- CSF-/- mice, granulopoietic precursor cells were reduced by 50% and there were reduced levels of granulocyte, macrophage, and blast progenitor cells. Despite G-CSF deficiency, mature neutrophils were still present in the blood and marrow, indicating that other factors can support neutrophil production in vivo. G-CSF-/- mice had reduced numbers of neutrophils available for rapid mobilization into the circulation by a single dose of G-CSF. G-CSF administration reversed the granulopoietic defect of G-CSF-/- mice. One day of G-CSF administration to G-CSF-/- mice elevated circulating neutrophil levels to normal, and after 4 days of G-CSF administration, G-CSF+/+ and G-CSF- /- marrows were morphologically indistinguishable. G-CSF-/- mice had a markedly impaired ability to control infection with Listeria monocytogenes, with diminished neutrophil and delayed monocyte increases in the blood and reduced infection-driven granulopoiesis. Collectively, these observations indicate that G-CSF is indispensible for maintaining the normal quantitative balance of neutrophil production during “steady-state” granulopoiesis in vivo and also implicate G-CSF in “emergency” granulopoiesis during infections.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3