Affiliation:
1. Steritech Inc, Concord, CA 94520.
Abstract
Abstract
Platelet concentrates (PC) may be infrequently contaminated with low levels of bacteria that can cause septicemia and death in patients receiving transfusion therapy. We evaluated the efficacy of a photochemical decontamination (PCD) technique using 8-methoxypsoralen (8-MOP) and long wavelength UV light (UVA) to inactivate bacteria in standard therapeutic PC. Twelve phylogenetically distinct pathogenic bacteria, 5 gram-positive and 7 gram-negative organisms, were seeded into PC to a final challenge dose ranging from 10(5) to 10(7) colony- forming units (CFU)/mL. Contaminated PC were treated with 8-MOP (5 micrograms/mL) and 5 J/cm2 of UVA, a PCD treatment regimen found to adequately preserve in vitro platelet function. Greater than 10(5) CFU/mL of all 5 gram-positive (Staphylococcus aureus, Streptococcus epidermidis, Streptococcus pyogenes, Listeria monocytogenes, and Corynebacterium minutissimum) and 2 of the gram-negative (Escherichia coli and Yersinia enterocolitica) organisms were inactivated. The remaining 5 gram-negative organisms were more resistant, with less than 10(1) to 10(3.7) CFU/mL inactivated under these conditions. The inactivation efficiency for this resistant group of gram-negative organisms was improved when PC were resuspended in a synthetic storage medium with reduced plasma protein concentration (15%) and an increased 8-MOP concentration (23.4 micrograms/mL). Illumination with 3 J/cm2 of UVA in this system inactivated greater than 10(5) CFU/mL of 4 resistant gram-negative organisms (Salmonella choleraesuis, Enterobacter cloacae, Serratia marcescens, and Klebsiella pneumoniae) and 10(4.1) CFU/mL of the most resistant gram-negative organism (Pseudomonas aeruginosa). This level of PCD treatment did not adversely affect in vitro platelet function. These results demonstrate that PCD using 8-MOP (5 to 23.4 micrograms/mL) effectively inactivated high levels of pathogenic bacteria in PC with adequate preservation of in vitro platelet properties.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献