Mechanism of erythrocyte aggregation and sedimentation

Author:

Fabry TL1

Affiliation:

1. Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029.

Abstract

Unstirred suspensions of erythrocytes form stable spherical aggregates of uniform size. The radius of the spheres depends upon the suspending medium and the hematocrit. Erythrocyte suspensions will undergo sedimentation only after these aggregates are formed. Aggregation is a two-step process: first, erythrocytes associate in long chains (rouleau formation). Next, these chains form spheres of uniform size. The requirements for this well-defined process are an electrolyte and a neutral or negatively charged macromolecule in the solution and a metabolically active red cell. If these conditions are not met, red cells either will not aggregate at all or will form amorphous aggregates. Rouleau formation and sedimentation are inhibited by 4,4′- diisothiocyanatostilbene-2,2′-disulfonic acid, an inhibitor of anion transport, but not by ouabain, a cation transport inhibitor. The kinetics of erythrocyte sedimentation reflects the aforementioned mechanism: no sedimentation occurs during rouleau formation. Once the spheres of uniform size are formed, they will settle according to the Einstein-Stokes equation. In this model, parameters of sedimentation kinetics are the delay before sedimentation starts, the rate of sedimentation in the steady state, and the radius of the sedimenting aggregate. The radius can be calculated from the rate of fall of the aggregates and agrees well with the microscopically observed radius. It is inversely proportional to the hematocrit, which explains the elevated sedimentation rates in anemia.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3