Synergism between erythropoietin and interleukin-3 in the induction of hematopoietic stem cell proliferation and erythroid burst colony formation

Author:

Migliaccio G1,Migliaccio AR1,Visser JW1

Affiliation:

1. Department of Hematology, Istituto Superiore Sanita, Rome.

Abstract

The influence of recombinant erythropoietin (Ep) and interleukin-3 (IL- 3) on the proliferation and differentiation of murine hematopoietic stem and progenitor cells was investigated in serum-deprived cultures. The differentiation of progenitor cells, purified by collecting blast cell colonies from spleen cell cultures of 5-fluorouracil-treated mice, was evaluated by scoring the number and type of colonies appearing after eight days in semisolid culture. IL-3 induced the formation of both erythroid and granulocyte-macrophage colonies in a concentration- dependent fashion, the plateau being reached at 300 U/mL. However, concentrations of IL-3 alone that had little or no effect (less than or equal to 10 U/mL) induced maximal numbers of erythroid bursts in the presence of Ep (1.5 IU/mL). In the presence of Ep alone, no colonies were seen. Proliferation of quiescent hematopoietic stem cells, purified by cell sorting and evaluated by spleen colony assay (CFU-S), was investigated by measuring the total cell number and CFU-S content and the DNA histogram at 20 and 48 hours of liquid culture. Almost no cells or CFU-S survived 20 hours of incubation without the addition of IL-3. The presence of either IL-3 (400 U/mL) or the combination of EP and IL-3 (10 U/mL), supported the maintenance of nearly 40% of sorted CFU-S for 48 hours. Approximately 10% of these cells were in the S phase of the cell cycle at 20 hours and an increase in the total cell number per culture, but not in the CFU-S content, was detected at 48 hours. These data indicate that IL-3 exerts a differentiative and proliferative effect on early stem and progenitor cells, which is concentration dependent. At IL-3 concentrations, which had little or no activity alone, Ep acted synergistically to induce both proliferation of stem cells and differentiation of erythroid progenitors.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3