Author:
Gündogdu Mehtap S,Liu He,Metzdorf Daniela,Hildebrand Dagmar,Aigner Michael,Aktories Klaus,Heeg Klaus,Kubatzky Katharina F
Abstract
Abstract
Background
RhoH is a constitutively active member of the family of Rho GTPases. Its expression is restricted to the haematopoietic lineage, where it serves as a positive regulator for T cell selection and mast cell function and as a negative regulator for growth-related functions in other lineages. Here, we examined the activation of signal transducer and activator of transcription (STAT) proteins in response to stimulation with interleukin 3 (IL3).
Results
Using the murine IL3-dependent cell line BaF3 we investigated the influence of RhoH protein expression levels on IL3-mediated cellular responses. RhoH overexpressing cells showed lower sensitivity to IL3 and decreased STAT5 activation. SiRNA-mediated repression of RhoH gene expression led to an increase in proliferation and STAT5 activity which correlated with an increased number of IL3 receptor α chain molecules, also known as CD123, expressed at the cell surface. Interestingly, these findings could be reproduced using human THP-1 cells as a model system for acute myeloid leukaemia, where low RhoH levels are known to be an unfavourable prognostic marker. Overexpression of RhoH on the other hand caused an induction of STAT1 activity and western blot analysis revealed that activated STAT1 is phosphorylated on Tyr701. STAT1 is known to induce apoptosis or cell cycle arrest and we detected an upregulation of cyclin-dependent kinase inhibitors (CDKI) p21
Cip1
and p27
Kip1
in RhoH overexpressing BaF3 cells.
Conclusions
We propose that RhoH functions as a negative regulator for IL3-induced signals through modulation of the JAK-STAT pathway. High levels of RhoH allow the IL3-dependent activation of STAT1 causing decreased proliferation through upregulation of p21
Cip1
and p27
Kip1
. Low RhoH levels on the other hand led to an upregulation of IL3-dependent cell growth, STAT5 activity and an increase of CD123 surface expression, linking RhoH to a CD123/STAT5 phenotype that has been described in AML patients.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Medicine
Reference38 articles.
1. Madaule P, Axel R: A novel ras-related gene family. Cell. 1985, 41: 31-40. 10.1016/0092-8674(85)90058-3
2. Bar-Sagi D, Hall A: Ras and Rho GTPases: a family reunion. Cell. 2000, 103: 227-238. 10.1016/S0092-8674(00)00115-X
3. Vojtek AB, Der CJ: Increasing complexity of the Ras signaling pathway. J Biol Chem. 1998, 273: 19925-19928. 10.1074/jbc.273.32.19925
4. Etienne-Manneville S, Hall A: Rho GTPases in cell biology. Nature. 2002, 420: 629-635. 10.1038/nature01148
5. Dallery E, Galiegue-Zouitina S, Collyn-d'Hooghe M, Quief S, Denis C, Hildebrand MP, Lantoine D, Deweindt C, Tilly H, Bastard C: TTF, a gene encoding a novel small G protein, fuses to the lymphoma-associated LAZ3 gene by t(3;4) chromosomal translocation. Oncogene. 1995, 10: 2171-2178.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献