Multimer size dependence of von Willebrand factor binding to crosslinked or noncrosslinked fibrin

Author:

Ribes JA1,Francis CW1

Affiliation:

1. Department of Pharmacology, Merck Sharp & Dohme Research Laboratories, West Point, PA 19486.

Abstract

Abstract von Willebrand factor (vWF) is synthesized in endothelial cells (EC) and may be either secreted constitutively or stored in Weibel-Palade bodies (WPB) for regulated release. Because fibrin stimulates rapid vWF release from EC, we examined the binding of EC synthesized vWF to fibrin. Culture medium containing constitutively secreted vWF was removed from metabolically labeled primary cultures of human umbilical vein EC, and vWF released from WPB was obtained after stimulation by A23187. vWF-deficient fibrinogen with or without factor XIII was added to releasate or media and clotted with thrombin to form crosslinked or noncrosslinked fibrin. vWF was immunopurified from releasate or media before and after clotting, and the amount and multimeric pattern of vWF bound was determined after sodium dodecyl sulfate agarose gel electrophoresis. High molecular weight multimers of vWF, whether secreted constitutively or released from WPB, bound preferentially to fibrin. Multimers of greater than 20 subunits represented 60% +/- 4% (SEM) of A23187 released vWF and 11% +/- 5% of media vWF, but binding to fibrin was similar, 96% +/- 1% and 94% +/- 2%, respectively. A progressively smaller proportion of vWF bound as multimer size decreased, and dimeric vWF binding was least, with 34% +/- 5% binding from A23187 releasate and 51% +/- 4% from media. The amount of vWF binding to crosslinked or noncrosslinked fibrin was similar, and preferential binding of high molecular weight multimers occurred with both. As measured by enzyme-linked immunosorbent assay, 45% +/- 2% of constitutively secreted vWF bound to crosslinked fibrin and 50% +/- 2% to noncrosslinked fibrin. The propolypeptide of vWF did not bind to fibrin. These findings indicate that binding of EC secreted vWF binding to fibrin depends on multimeric size but not on factor XIII crosslinking. This suggests that vWF released from EC in the presence of fibrin will bind locally, thereby facilitating platelet adhesion to the hemostatic plug or thrombus.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3