The impact of von Willebrand factor on fibrin formation and structure unveiled with type 3 von Willebrand disease plasma

Author:

Martinez-Vargas Marina123,Courson Justin23,Gardea Luis4,Sen Mehmet5,Yee Andrew34,Rumbaut Rolando23,Cruz Miguel A.123

Affiliation:

1. Section of Cardiovascular Research

2. Department of Medicine

3. Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center

4. Department of Pediatrics, Baylor College of Medicine

5. University of Houston, Houston, Texas, USA

Abstract

Normally, von Willebrand factor (VWF) remains inactive unless its A1A2 domains undergo a shear stress-triggered conformational change. We demonstrated the capacity of a recombinant A2 domain of VWF to bind and to affect fibrin formation, altering the fibrin clot structure. The data indicated that VWF contains an additional binding site for fibrin in the A2 domain that plays a role in the incorporation of VWF to the polymerizing fibrin. This study is to examine the hypothesis that active plasma VWF directly influence fibrin polymerization and the structure of fibrin clots. The study used healthy and type 3 von Willebrand disease (VWD) plasma, purified plasma VWF, fibrin polymerization assays, confocal microscopy and scanning electron microscopy. The exposed A2 domain in active VWF harbors additional binding sites for fibrinogen, and significantly potentiates fibrin formation (P < 0.02). Antibody against the A2 domain of VWF significantly decreased the initial rate of change of fibrin formation (P < 0.002). Clot analyses revealed a significant difference in porosity between normal and type 3 VWD plasma (P < 0.008), further supported by scanning electron microscopy, which demonstrated thicker fibrin fibers in the presence of plasma VWF (P < 0.0003). Confocal immunofluorescence microscopy showed punctate VWF staining along fibrin fibrils, providing visual evidence of the integration of plasma VWF into the fibrin matrix. The study with type 3 VWD plasma supports the hypothesis that plasma VWF directly influences fibrin polymerization and clot structure. In addition, a conformational change in the A1A2 domains exposes a hidden fibrin(ogen) binding site, indicating that plasma VWF determines the fibrin clot structure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3