Oxidation-induced changes in microrheologic properties of the red blood cell membrane

Author:

Hebbel RP1,Leung A1,Mohandas N1

Affiliation:

1. Department of Medicine, University of Minnesota, Minneapolis 55455.

Abstract

Abstract It has been hypothesized that some of the irreversible microrheologic abnormalities of sickle red blood cell (RBC) membranes could result from autoxidative perturbation. To model this possibility, we used micromechanical manipulation to examine the static extensional rigidity and inelastic or plastic behavior of normal RBCs exposed to phenazine methosulfate (PMS), an agent that generates superoxide from within the cell. In response to this stress, RBC membranes became stiff as evidenced by increasing extensional rigidity. At 50 mumol/L PMS they were as stiff as the membranes of most dense, dehydrated sickle RBCs; and at 25 mumols/L PMS the membranes were similar to somewhat less dense sickle RBCs. When examined for inelastic behavior, RBCs exposed to PMS even at 10 mumols/L showed hysteresis in loading and unloading phases of the curve relating aspiration length to suction pressure, and they developed membrane bumps that persisted after RBC release from the pipette. Examination of single cells in both isotonic and hypotonic buffers showed that the effect of PMS on RBC microheology is not mediated by cellular dehydration. Independent confirmation of the membrane stiffening effect of PMS was obtained by ektacytometric analysis of resealed RBC ghosts, with sickle-like increases in membrane rigidity observed between 50 and 100 mumol/L PMS. The rigidity of these ghosts was partially ameliorated by exposure to a thiol reductant. In terms of biochemical abnormalities, treated RBCs became significantly different from control RBCs at 25 mumol/L PMS, at which point they just began to enter the sickle range for amounts of membrane thiol oxidation and membrane-associated heme. The sickle average was achieved at 50 mumol/L PMS (for thiol oxidation) to 100 mumol/L PMS (for membrane heme). Thus, micromolar concentrations of PMS induce abnormalities of membrane microrheology that closely mimic those of unmanipulated sickle RBCs while reproducing similar degrees of oxidative biochemical change. We conclude that membrane protein oxidation could explain existence of an irreversible component to the abnormal rheology of the sickle membrane.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3