Biophysical Profiling of Red Blood Cells from Thin-film Blood Smears using Deep Learning

Author:

Lamoureux Erik S.,Cheng You,Islamzada Emel,Matthews Kerryn,Duffy Simon P.,Ma HongshenORCID

Abstract

AbstractMicroscopic inspection of thin-film blood smears is widely used to identify red blood cell (RBC) pathologies, including malaria parasitism and hemoglobinopathies, such as sickle cell disease and thalassemia. Emerging research indicates that non-pathologic changes in RBCs can also be detected in images, such as deformability and morphological changes resulting from the storage lesion. In transfusion medicine, cell deformability is a potential biomarker for the quality of donated RBCs. However, a major impediment to the clinical translation of this biomarker is the difficulty associated with performing this measurement. To address this challenge, we developed an approach for biophysical profiling of RBCs based on cell images in thin-film blood smears. We hypothesize that subtle cellular changes are evident in blood smear images, but this information is currently undetectable by human cognition. To test this hypothesis, we developed a deep learning strategy to analyze Giemsa-stained blood smears to assess the subtle morphologies indicative of RBC deformability and storage-based degradation. Specifically, we prepared thin-film blood smears from 27 RBC samples (9 donors evaluated at 3 storage timepoints) and imaged them using high-resolution microscopy. Using this dataset, we trained a convolutional neural network to evaluate image-based morphological features related to cell deformability. The prediction of donor deformability is strongly correlated to the microfluidic scores and can be used to categorize images into specific deformability groups with high accuracy. We also used this model to evaluates differences in RBC morphology resulting from cold storage. Together, our results demonstrate that deep learning models can exceed the limits of human cognition to detect subtle cellular differences in morphology resulting from deformability and cold storage. This result suggests the potential to assess donor blood quality from thin-film blood smears, which can be acquired ubiquitously in clinical workflows.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3