Growth regulation of human acute myeloid leukemia: effects of five recombinant hematopoietic factors in a serum-free culture system

Author:

Delwel R1,Salem M1,Pellens C1,Dorssers L1,Wagemaker G1,Clark S1,Lowenberg B1

Affiliation:

1. Dr Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.

Abstract

Abstract The response of human acute myeloid leukemia (AML) cells to the distinct hematopoietic growth factors (HGFs), ie, recombinant interleukin-3 (IL-3), granulocyte-macrophage-CSF (GM-CSF), granulocyte- CSF (G-CSF), macrophage-CSF (M-CSF), and erythropoietin (Epo) was investigated under well-defined serum-free conditions. Proliferative responses to these factors, when added separately as well as in combinations, were analyzed in 25 cases of human AML using 3H-thymidine incorporation and colony assays. The 3H-thymidine uptake data revealed that IL-3, GM-CSF, G-CSF, and M-CSF were stimulators of AML proliferation in 19, 15, 13, and 4 cases, respectively. Epo only stimulated DNA synthesis in the cells of the single erythroleukemia case. GM-CSF stimulation was seen only in IL-3 reactive cases and GM- CSF, when combined with IL-3, could not further elevate the DNA synthesis evoked by IL-3 alone. On the other hand, in six cases, G-CSF enhanced the IL-3- or GM-CSF-stimulated thymidine uptake. These results suggest that subpopulations of AML cells that are activated by distinct CSFs (eg, IL-3/GM-CSF-responsive cells and G-CSF-responsive cells) coexist. The 3H-thymidine incorporation assay was more sensitive for measuring CSF responses than methylcellulose colony cultures, since activation of DNA synthesis was more frequently seen than induction of colony formation. DNA synthesis experiments revealed eight different CSF response patterns among these 25 cases. CSF phenotyping may be a useful addition to the morphologic classification of AML, since these patterns directly reflect the ability of the proliferating subsets of AML cells to respond to the CSFs.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3