Tumor necrosis factor-α induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface

Author:

Hallermalm Kristian1,Seki Katzutake1,Wei Chenhong1,Castelli Chiara1,Rivoltini Licia1,Kiessling Rolf1,Levitskaya Jelena1

Affiliation:

1. From the Cancer Centrum Karolinska and the Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm, Sweden; and Unita Operativa Immunoterapia dei Tumori Umani, Istituto Nazionale Tumori, Milan, Italy.

Abstract

It is demonstrated that similar to interferon γ (IFN-γ), tumor necrosis factor-α (TNF-α) induces coordinated changes at different steps of the major histocompatibility complex (MHC) class I processing and presentation pathway in nonprofessional antigen-presenting cells (APCs). TNF-α up-regulates the expression of 3 catalytic immunoproteasome subunits—LMP2, LMP7, and MECL-1—the immunomodulatory proteasome activator PA28α, the TAP1/TAP2 heterodimer, and the total pool of MHC class I heavy chain. It was also found that in TNF-α–treated cells, MHC class I molecules reconstitute more rapidly and have an increased average half-life at the cell surface. Biochemical changes induced by TNF-α in the MHC class I pathway were translated into increased sensitivity of TNF-α–treated targets to lysis by CD8+ cytotoxic T cells, demonstrating improved presentation of at least certain endogenously processed MHC class I–restricted peptide epitopes. Significantly, it was demonstrated that the effects of TNF-α observed in this experimental system were not mediated through the induction of IFN-γ. It appears to be likely that TNF-α–mediated effects on MHC class I processing and presentation do not involve any intermediate messengers. Collectively, these data demonstrate the existence of yet another biologic activity exerted by TNF-α, namely its capacity to act as a coordinated multi-step modulator of the MHC class I pathway of antigen processing and presentation. These results suggest that TNF-α may be useful when a concerted up-regulation of the MHC class I presentation machinery is required but cannot be achieved by IFN-γ.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3