Affiliation:
1. From the Department of Molecular and Cellular Biology, Pfizer Global Research and Development, Fresnes, France; the Department of Medicine, Imperial College School of Medicine, London, United Kingdom; and the Department of Immunology, the Department of Medicine and Therapeutics, and the Division of Biochemistry and Molecular Biology, University of Glasgow, Scotland.
Abstract
AbstractImmunoglobulin G (IgG) receptors (FcγRs) on myeloid cells are responsible for the internalization of immune complexes. Activation of the oxidase burst is an important component of the integrated cellular response mediated by Fc receptors. Previous work has demonstrated that, in interferon-γ–primed U937 cells, the high-affinity receptor for IgG, FcγRI, is coupled to a novel intracellular signaling pathway that involves the sequential activation of phospholipase D (PLD), sphingosine kinase, and calcium transients. Here, it is shown that both known PLD isozymes, PLD1 and PLD2, were present in these cells. With the use of antisense oligonucleotides to specifically reduce the expression of either isozyme, PLD1, but not PLD2, was found to be coupled to FcγRI activation and be required to mediate receptor activation of sphingosine kinase and calcium transients. In addition, coupling of FcγRI to activation of the nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) oxidase burst was inhibited by pretreating cells with 0.3% butan-1-ol, indicating an absolute requirement for PLD. Furthermore, use of antisense oligonucleotides to reduce expression of PLD1 or PLD2 demonstrated that PLD1 is required to couple FcγRI to the activation of NADPH oxidase and trafficking of internalized immune complexes for degradation. These studies demonstrate the critical role of PLD1 in the intracellular signaling cascades initiated by FcγRI and its functional role in coordinating the response to antigen-antibody complexes.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献