Tumor-specific aneuploidy not detected in CD19+ B-lymphoid cells from myeloma patients in a multidimensional flow cytometric analysis

Author:

McSweeney PA1,Wells DA1,Shults KE1,Nash RA1,Bensinger WI1,Buckner CD1,Loken MR1

Affiliation:

1. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA.

Abstract

Aneuploidy and lg light chain restriction were used as separate, independent tumor specific markers to study 26 patients with multiple myeloma to determine whether bone marrow B cells, as defined by CD19 expression, are clonally related to myeloma plasma cells. Specimens were characterized using multidimensional flow cytometry to identify the presence of clonality in both the B lymphoid and plasma cell populations using both surface and cytoplasmic staining with antibodies specific for kappa or lambda lg light chain In none of the patients with multiple myeloma were CD19+ cells found to be clonally restricted to kappa or lambda. The monoclonal plasma cells (MPC) were found to be uniformly negative for CD10, CD19, and CD34, while the CD19+ B lymphoid cells present within the samples expressed normal intensities and relationships of these antigens, which allowed them to serve as internal positive controls. Combined analysis of call surface antigen expression and DNA content allowed plasma cell populations to be characterized for aneuploidy without interference from normal bone marrow cells. The MPC, detected on the basis of bright CD38 expression (CD38+2), demonstrated DNA aneuploidy in 65% of cases (DNA index range of 0.9 to 1.3). These aneuploid DNA distributions had typical cell cycle profiles (including G1,S and G2+M) expected of a proliferating population. In all cases, DNA aneuploidy was confined almost entirely to the CD38+2, CD19- malignant plasma cells, while cells expressing CD19 were diploid. These results support the concept that myeloma is a disease process mediated by self-replicating, late compartments of B- cell ontogeny.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3