Band 3 is an anchor protein and a target for SHP-2 tyrosine phosphatase in human erythrocytes

Author:

Bordin Luciana1,Brunati Anna Maria1,Donella-Deana Arianna1,Baggio Bruno1,Toninello Antonio1,Clari Giulio1

Affiliation:

1. From the Dipartimento di Chimica Biologica, and Centro di Studio delle Biomembrane del Consiglio Nazionale delle Ricerche (CNR); and the Istituto di Medicina Interna, Divisione di Nefrologia, University of Padova, Italy.

Abstract

AbstractTyr phosphorylation of the multifunctional transmembrane protein band 3 has been implicated in several erythrocyte functions and disorders. We previously demonstrated that pervanadate treatment of human erythrocytes induces band-3 Tyr phosphorylation, which is catalyzed by the sequential action of tyrosine kinase Syk and tyrosine kinase(s) belonging to the Src family. In this study, we show that Tyr phosphorylation of band 3, elicited by pervanadate, N-ethylmaleimide, or diamide, greatly increases band-3 interaction with the tyrosine phosphatase SHP-2 in parallel with the translocation of SHP-2 to erythrocyte membranes. These events seem to be mediated by Src-like catalyzed phosphorylation of band 3 because both SHP-2 translocation to cellular membranes and its interaction with Tyr-phosphorylated protein are greatly counteracted by PP2, a specific inhibitor of Src kinases. Binding-competition experiments demonstrate that SHP-2 recruitment to band 3 occurs via its SH2 domain(s). In particular, our data support the view that SHP-2 docks specifically with P-Y359 of band 3. Experiments performed with intact erythrocytes in the presence of the SHP-2 inhibitor calpeptin suggest that, once recruited to Tyr-phosphorylated band 3, the tyrosine phosphatase dephosphorylates the protein. P-Y8, 21, and 904 are the residues affected by SHP-2, as judged by 32P-peptide mapping of band 3 digested with trypsin. These results indicate that in treated erythrocytes, recruitment of cytosolic SHP-2 to band 3 is a prerequisite for the subsequent dephosphorylation of the transmembrane protein.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3