Affiliation:
1. Dipartimento di Biochimica ‘A. Castellani’, Via Bassi 21, Università di Pavia, I-27100 Pavia, Italy
Abstract
Human erythrocytes were induced to release membrane vesicles by treatment with Ca2+ and ionophore A23187. In addition to the biochemical changes already known to accompany loading of human erythrocytes with Ca2+, the present study reveals that tyrosine phosphorylation of the anion exchanger band 3 protein also occurs. The relationship between tyrosine phosphorylation of band 3 and membrane vesiculation was analysed using quinine (a non-specific inhibitor of the Ca2+-activated K+ channel, and the only known inhibitor of Ca2+-induced vesiculation) and charybdotoxin, a specific inhibitor of the apamin-insensitive K+-channel. Both inhibitors suppressed tyrosine phosphorylation of band 3. In the presence of quinine, membrane vesiculation was also suppressed. In contrast, at the concentration of charybdotoxin required to suppress tyrosine phosphorylation of band 3, membrane vesiculation was only mildly inhibited (16–23% inhibition), suggesting that tyrosine phosphorylation of band 3 is not necessary for membrane vesiculation. Phosphorylation of band 3 was in fact observed when erythrocytes were induced to shrink in a Ca2+-independent manner, e.g. by treatment with the K+ ionophore valinomycin or with hypertonic solutions. These observations suggest that band 3 tyrosine phosphorylation occurs when cell volume regulation is required.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献