RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation

Author:

Elagib Kamaleldin E.1,Racke Frederick K.1,Mogass Michael1,Khetawat Rina1,Delehanty Lorrie L.1,Goldfarb Adam N.1

Affiliation:

1. From the Department of Pathology, University of Virginia, Charlottesville; and the Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD.

Abstract

AbstractMegakaryocytic and erythroid lineages derive from a common bipotential progenitor and share many transcription factors, most prominently factors of the GATA zinc-finger family. Little is known about transcription factors unique to the megakaryocytic lineage that might program divergence from the erythroid pathway. To identify such factors, we used the K562 system in which megakaryocyte lineage commitment is dependent on sustained extracellular regulatory kinase (ERK) activation and is inhibited by stromal cell contact. During megakaryocytic induction in this system, the myeloid transcription factor RUNX1 underwent up-regulation, dependent on ERK signaling and inhibitable by stromal cell contact. Immunostaining of healthy human bone marrow confirmed a strong expression of RUNX1 and its cofactor, core-binding factor β (CBFβ), in megakaryocytes and a minimal expression in erythroblasts. In primary human hematopoietic progenitor cultures, RUNX1 and CBFβ up-regulation preceded megakaryocytic differentiation, and down-regulation of these factors preceded erythroid differentiation. Functional studies showed cooperation among RUNX1, CBFβ, and GATA-1 in the activation of a megakaryocytic promoter. By contrast, the RUNX1-ETO leukemic fusion protein potently repressed GATA-1–mediated transactivation. These functional interactions correlated with physical interactions observed between GATA-1 and RUNX1 factors. Enforced RUNX1 expression in K562 cells enhanced the induction of the megakaryocytic integrin proteins αIIb and α2. These results suggest that RUNX1 may participate in the programming of megakaryocytic lineage commitment through functional and physical interactions with GATA transcription factors. By contrast, RUNX1-ETO inhibition of GATA function may constitute a potential mechanism for the blockade of erythroid and megakaryocytic differentiation seen in leukemias with t(8;21).

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3