Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1

Author:

Manalo Dominador J.1,Rowan Ashley1,Lavoie Tera1,Natarajan Lakshmi1,Kelly Brian D.1,Ye Shui Q.1,Garcia Joe G. N.1,Semenza Gregg L.1

Affiliation:

1. From the Vascular Program, Institute for Cell Engineering; the Departments of Pediatrics, Medicine, Oncology, and Radiation Oncology; and the McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD.

Abstract

AbstractHypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding angiogenic growth factors, which are secreted by hypoxic cells and stimulate endothelial cells, leading to angiogenesis. To determine whether HIF-1 also mediates cell-autonomous responses to hypoxia, we have compared gene expression profiles in arterial endothelial cells cultured under nonhypoxic versus hypoxic conditions and in nonhypoxic cells infected with adenovirus encoding beta-galactosidase versus a constitutively active form of HIF-1α (AdCA5). There were 245 gene probes that showed at least 1.5-fold increase in expression in response to hypoxia and in response to AdCA5; 325 gene probes showed at least 1.5-fold decrease in expression in response to hypoxia and in response to AdCA5. The largest category of genes down-regulated by both hypoxia and AdCA5 encoded proteins involved in cell growth/proliferation. Many genes up-regulated by both hypoxia and AdCA5 encoded cytokines/growth factors, receptors, and other signaling proteins. Transcription factors accounted for the largest group of HIF-1–regulated genes, indicating that HIF-1 controls a network of transcriptional responses to hypoxia in endothelial cells. Infection of endothelial cells with AdCA5 under nonhypoxic conditions was sufficient to induce increased basement membrane invasion and tube formation similar to the responses induced by hypoxia, indicating that HIF-1 mediates cell-autonomous activation of endothelial cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3