Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment

Author:

Mazurier Frédéric1,Gan Olga I.1,McKenzie Joby L.1,Doedens Monica1,Dick John E.1

Affiliation:

1. From the Division of Cell and Molecular Biology, University Health Network, and Department of Molecular Genetics and Microbiology, University of Toronto, Toronto, ON, Canada.

Abstract

Abstract Knowledge of the composition and interrelationship of the various hematopoietic stem cells (HSCs) that comprise the human HSC pool and the consequence of culture on each class is required for effective therapies based on stem cells. Clonal tracking of retrovirally transduced HSCs in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice revealed heterogeneity in the repopulation capacity of SCID-repopulating cells (SRCs). However, it is impossible to establish whether HSC heterogeneity is intrinsic or whether the culture conditions required for retroviral transduction induce qualitative and quantitative alterations to SRCs. Here, we report establishment of a clonal tracking method that uses lentivectors to transduce HSCs with minimal manipulation during overnight culture without cytokine stimulation. By serial bone marrow (BM) sampling of mice receiving transplants, short-term SRCs (ST-SRCs) and long-term SRCs (LT-SRCs) were identified on the basis of repopulation dynamics demonstrating that their existence is not an experimental artifact but reflects the state of the HSC pool. However, 4 days of culture in conditions previously used for SRC retroviral transduction significantly reduced SRC number as assessed by clonal analysis. These studies provide a foundation to understand the molecular and cellular determinants of human HSC development and to develop therapies targeted to specific HSC classes.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3