A mixed-effects stochastic model reveals clonal dominance in gene therapy safety studies

Author:

Del Core LucaORCID,Pellin DaniloORCID,Wit Ernst C.ORCID,Grzegorczyk Marco A.ORCID

Abstract

AbstractBackgroundMathematical models of haematopoiesis can provide insights on abnormal cell expansions (clonal dominance), and in turn can guide safety monitoring in gene therapy clinical applications. Clonal tracking is a recent high-throughput technology that can be used to quantify cells arising from a single haematopoietic stem cell ancestor after a gene therapy treatment. Thus, clonal tracking data can be used to calibrate the stochastic differential equations describing clonal population dynamics and hierarchical relationships in vivo.ResultsIn this work we propose a random-effects stochastic framework that allows to investigate the presence of events of clonal dominance from high-dimensional clonal tracking data. Our framework is based on the combination between stochastic reaction networks and mixed-effects generalized linear models. Starting from the Kramers–Moyal approximated Master equation, the dynamics of cells duplication, death and differentiation at clonal level, can be described by a local linear approximation. The parameters of this formulation, which are inferred using a maximum likelihood approach, are assumed to be shared across the clones and are not sufficient to describe situation in which clones exhibit heterogeneity in their fitness that can lead to clonal dominance. In order to overcome this limitation, we extend the base model by introducing random-effects for the clonal parameters. This extended formulation is calibrated to the clonal data using a tailor-made expectation-maximization algorithm. We also provide the companion  package , publicly available for download athttps://cran.r-project.org/package=RestoreNet.ConclusionsSimulation studies show that our proposed method outperforms the state-of-the-art. The application of our method in two in-vivo studies unveils the dynamics of clonal dominance. Our tool can provide statistical support to biologists in gene therapy safety analyses.

Funder

European Cooperation in Science and Technology

Fondazione Leonardo

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3