Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver

Author:

Mingozzi Federico1,Hasbrouck Nicole C.1,Basner-Tschakarjan Etiena1,Edmonson Shyrie A.12,Hui Daniel J.13,Sabatino Denise E.13,Zhou Shangzhen1,Wright J. Fraser14,Jiang Haiyan5,Pierce Glenn F.5,Arruda Valder R.13,High Katherine A.123

Affiliation:

1. Division of Hematology and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, PA;

2. Howard Hughes Medical Institute, Philadelphia, PA;

3. University of Pennsylvania School of Medicine, Philadelphia, PA;

4. University of Pennsylvania Department of Pathology and Laboratory Medicine, Philadelphia;

5. Avigen, Alameda, CA

Abstract

Adeno-associated virus (AAV)–mediated gene transfer of factor IX (F.IX) to the liver results in long-term expression of transgene in experimental animals, but only short-term expression in humans. Loss of F.IX expression is likely due to a cytotoxic immune response to the AAV capsid, which results in clearance of transduced hepatocytes. We used a nonhuman primate model to assess the safety of AAV gene transfer coupled with an anti–T-cell regimen designed to block this immune response. Administration of a 3-drug regimen consisting of mycophenolate mofetil (MMF), sirolimus, and the anti–IL-2 receptor antibody daclizumab consistently resulted in formation of inhibitory antibodies to human F.IX following hepatic artery administration of an AAV-hF.IX vector, whereas a 2-drug regimen consisting only of MMF and sirolimus did not. Administration of daclizumab was accompanied by a dramatic drop in the population of CD4+CD25+FoxP3+ regulatory T cells (Tregs). We conclude that choice of immunosuppression (IS) regimen can modulate immune responses to the transgene product upon hepatic gene transfer in subjects not fully tolerant; and that induction of transgene tolerance may depend on a population of antigen-specific Tregs.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 206 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3